Top 100 mathematics keywords for Data Science – Part 1

Image credit: www.Pixabay.com

Whoever is teaching you data science without teaching you Mathematics especially optimization is not teaching it right to you. That’s my biggest learning from Master of Data Science at IIT Gandhinagar – it will take you good 2 years to learn the related mathematics in all four major areas below. It’s not possible to learn this mathematics in few weeks even months, it will take a year or two. Here are the top 100 mathematical keywords commonly used in Data Science, Machine Learning, and AI (sourced from ChatGPT):


1. Probability & Statistics

  1. Probability
  2. Random Variable
  3. Expectation (Mean)
  4. Variance
  5. Standard Deviation
  6. Skewness
  7. Kurtosis
  8. Probability Density Function (PDF)
  9. Cumulative Distribution Function (CDF)
  10. Bayes’ Theorem
  11. Conditional Probability
  12. Joint Probability
  13. Likelihood
  14. Maximum Likelihood Estimation (MLE)
  15. Prior Probability
  16. Posterior Probability
  17. Hypothesis Testing
  18. Null Hypothesis (H0H_0)
  19. Alternative Hypothesis (HAH_A)
  20. p-value
  21. Confidence Interval
  22. T-test
  23. Chi-square Test
  24. ANOVA (Analysis of Variance)
  25. Z-score
  26. Central Limit Theorem (CLT)
  27. Law of Large Numbers
  28. Binomial Distribution
  29. Poisson Distribution
  30. Normal Distribution
  31. Gaussian Distribution
  32. Exponential Distribution
  33. Log-normal Distribution

2. Linear Algebra

  1. Vector
  2. Matrix
  3. Scalar
  4. Tensor
  5. Eigenvalues
  6. Eigenvectors
  7. Determinant
  8. Singular Value Decomposition (SVD)
  9. Principal Component Analysis (PCA)
  10. Covariance Matrix
  11. Orthogonality
  12. Dot Product
  13. Cross Product
  14. Matrix Multiplication
  15. Rank of a Matrix
  16. Trace of a Matrix
  17. Identity Matrix
  18. Inverse Matrix
  19. Transpose of a Matrix
  20. Diagonalization
  21. Gram-Schmidt Process

3. Calculus & Optimization

  1. Derivative
  2. Partial Derivative
  3. Gradient
  4. Hessian Matrix
  5. Jacobian Matrix
  6. Chain Rule
  7. Gradient Descent
  8. Stochastic Gradient Descent (SGD)
  9. Learning Rate
  10. Loss Function
  11. Cost Function
  12. Objective Function
  13. Convex Function
  14. Concave Function
  15. Local Minimum
  16. Global Minimum
  17. Local Maximum
  18. Global Maximum
  19. Lagrange Multipliers
  20. Optimization
  21. Regularization
  22. L1 Regularization (Lasso)
  23. L2 Regularization (Ridge)

4. Machine Learning Metrics & Functions

  1. Accuracy
  2. Precision
  3. Recall
  4. F1-score
  5. ROC Curve
  6. AUC (Area Under Curve)
  7. Confusion Matrix
  8. True Positive (TP)
  9. True Negative (TN)
  10. False Positive (FP)
  11. False Negative (FN)
  12. Logarithm (Log)
  13. Exponential Function
  14. Softmax Function
  15. Sigmoid Function
  16. Activation Function
  17. Cross-Entropy Loss
  18. Mean Squared Error (MSE)
  19. Mean Absolute Error (MAE)
  20. Hinge Loss
  21. Kullback-Leibler Divergence
  22. Entropy
  23. Information Gain

These 100 mathematical keywords form the foundation of Data Science, Machine Learning, and AI.

By Neil Harwani

Interested in movies, music, history, computer science, software, engineering and technology

Leave a comment